====== Superposition Encoding ====== ===== Demonstrate interests of SupEnc ===== BS -----------------> Far user (f) -----> Near user (u) ==== Signal transmit from the BS ==== $x = \sqrt{1-\alpha} s_n + \sqrt{\alpha} s_f$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_01.png?type=equation}} ==== Capacity of far user ==== $c_f(\alpha) = \log \left( 1 + \frac{\alpha\mathrm{SNR}_f |h_f|^2} {1+(1-\alpha)\mathrm{SNR}_f |h_f|^2} \right)$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_02.png?type=equation}} $\mathrm{SNR}_f = \frac{\mathrm{P}_{\mathrm{TX}}}{\sigma^2} \mathrm{L}_f$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_03.png?type=equation}} ==== Capacity of near user ==== $c_n(\alpha) = \log( 1 + (1-\alpha)\mathrm{SNR}_n |h_n|^2)$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_04.png?type=equation}} ==== Assumption of p-% for far user capacity ==== $\frac{c_f(1) - c_f(\alpha)}{c_f(1)} \leq \rho$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_05.png?type=equation}} Get $\alpha$ compute $c_n(\alpha)$ versus $\mathrm{L}_n$ ==== Remark if $\mathrm{SNR}_f$ is small compared to 1 ==== $c_f(\alpha) \approx \frac{\alpha\mathrm{SNR}_f |h_f|^2} {1+(1-\alpha)\mathrm{SNR}_f |h_f|^2}$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_06.png?type=equation}} thus $\alpha = \frac{(1+\mathrm{SNR}_f |h_f|^2)(1-\rho)} {1+\mathrm{SNR}_f |h_f|^2(1-\rho)}$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_07.png?type=equation}} If $\mathrm{SNR}_f |h_f|^2$ is negligible compared to 1, $\alpha = 1 - \rho$ {{/home/alm002/nobackup/notes/RLT/Superposition_Encoding/equation_08.png?type=equation}}