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Abstract

In this paper, we propose a new constellation scheme fotinear precoding in MIMO downlink
channels. Instead of using a periodically replicated cdladion, the proposed periodically flipped
constellation (PFC) successively mirrors the existingsteltation to form an infinite constellation.
It is shown that the mirroring operation increases the &ffecminimum distance of the original
constellation and provides a superior error resistance tieconventional constellation scheme for
low order modulations, and low error rate scenarios. Byvalig for a contraction on the PFC,
further performance improvement due to a better tradedfvdéen the average transmit power and
minimum distance is achieved. Then, practical impleméntadf the PFC specified sphere encoder
is proposed. With a Schnorr-Euchner based algorithm, therspencoder with PFC does not suffer
from any penalty in terms of complexity. Finally, we applyet?FC in an OFDMA system and

evaluate the performance with numerical simulations.

I. INTRODUCTION

The next generation cellular system (such as IEEE 802.16m TH, advanced [2], etc) features
Multiple-Input Multiple-Output (MIMO) transmission (sg8], [4]) and multi-user communications.

In the uplink channel, as known as the Multiple Access ChefMAC), of such systems, multiple
mobile terminals transmit simultaneously to the baseatafl he latter treats the received signal in
such a way that messages from different mobile terminalsdetinguishable. The capacity region
of a multiple access[5] has been known decades ago. A cgaddiieving scheme is the Successive
Interference Cancellation (SIC). This scheme has been wadliest and extends naturally in the

MIMO case.
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Unlike the uplink channel, little is known for the downlinkh@nnel, as known as the Broadcast
Channel (BC), until recent years. Solid progress on the égpeegion of MIMO broadcast channel
has been made in [6], [7], [8], [9], and the exact characiion of the capacity region was found
in [10]. It has been shown that the Dirty Paper Coding (DPC)iea®s the capacity region. As a
dual counterpart of the SIC for the MAC, the DPC for the BC susivety removes the inter-user
interference at transmitter provided that exact ChanneleSte#ormation (CSI) is available at the
transmitter side.

The main hindrance to the practical implementation of the D®@si high complexity (see, for
example, [11]) and its sensibility to the CSI, as shown by [12jw complexity solutions come
naturally to the channel inversion based schemes, sucheagetto-Forcing (ZF) and the Minimum
Mean Square Error (MMSE) precoders. The main idea is to inversehéienel matrix at transmitter
in such a way that the inter-user interference is gone atdbeiver side. However, direct application
of such precoders either requires high transmit power oultsesn lower Signhal to Noise Ratio
(SNR) for a fixed transmit power, especially when the channetkirmés ill-conditioned. One of
the workaround is to apply the lattice basis reduction attthasmitter side. The lattice reduction
yields a better conditioned basis and a cubic constellatgsmed from the reduced basis has a much
smaller average energy (see [13]). Another workaroundesséttor perturbation scheme proposed by
Hochwaldet al [14]. Instead of sending symbol from the cubic constellatiarved from the lattice
of the inverse of the channel matrix, one can send any symbuoi the coset of this symbol. The
optimal choice can be decided by so-called sphere encadéoth schemes, a modulo operation is
involved at both the transmitter and receiver sides.

The performance of the vector perturbation scheme depegtydn the modulo function sensitiv-
ity to noise perturbation at low SNR. In our contribution, wemose to implement a hew non-linear
precoder based on the use of a more sophisticated coristelstheme called Periodically Flipped
Constellation (PFC) at the encoder associated to a modifiedlm@ichction at the receiver to perform
decoding. We show that this technique improves the perfocmat low SNR by reducing detection
errors due to noise perturbation. Unlike in the originalesole in [14], the sphere encoder cannot be
applied directly for the PFC case. We proposed therefore arglesghere encoder structure based
on Schnorr-Euchner algorithm (see [15]) that works for a broads of constellation including the
PFC. Moreover, it turns out that the complexity of the genephlese encoder is practically the same
as the original sphere encoder.

The rest of the paper is organized as follows. The system madkebame basic assumptions are
presented in section Il. Section Il introduces the propgsedbdically flipped constellation scheme.
The improvement that can be achieved with constellationraotibn is detailed in section 1V. More

over some numerical simulation results are shown in thigimedo asset the performance gain
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compared to conventional scheme. Section V deals with théeimgntation of the proposed scheme.

Finally, section VI concludes the paper.

II. PRELIMINARIES
A. Notations

The notations used in this paper are as follows. Boldface Havese lettery denote vectors,
boldface capital letterdf denote matricesC/ V' represents the complex Gaussian random variable.
E (X) is the mathematical expectation of random variakile|jv|| stands for the Euclidean norm of
vectorv. ||H | is the Frobenius norm of matril and H ' is the inverse of a square matrH.
ZX[i] is the set ofK length complex integer vectors. Finallyz| and [z] denote respectively the

floor and round operators.

B. System Model

We consider a broadcast channel with one source equippé&dNyiaintennas andd destinations
each one having single antenna. For the ease of presentagoassume thak’ = NV, although the

results can be extended straightforwardly to the case Witk N;. The signal model is

y_H\""ﬁ+z (1)

wherez € CN(0,1) is the Additive White Gaussian Noise (AWGNY is the channel matrix, and
is the power normalization factor that does not depend ortrimesmitted message, but can depend

on the channeH. Here, we set
o E(le]?)

z @

v

with P being the total transmission power of the source. Since theepofy can depend on both
the source message and the charfiigive impose that the expectation in (2) is only over the source

message for a given channel realizatiin

C. Channel Inversion

A simple linear precoding scheme is the zero-forcing prewpdalso denoted channel inversion)
where
2 Hs (3)

with s being the vector of signals intended for different usersslassumed thag belongs to a
constellation carved from the translated latticalefined by

L
A2 K] 4 r

(4)
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and is normalized in power, i.€(|s;|?) = 1 for all i. 7. is the minimum distance between two

different points in the constellation. With the ZF precoditige equivalent channel is

Yp = s+ 2k, VEk 5)

1 e

Since we can approximate—— by op,in(H ), the minimum singular value di, it can be deduced

IIH_lH
that this scheme suffers from significant loss in terms of paavel diversity (of order 1 in Rayleigh

fading channels).

D. Vector Perturbation

[Fig. 1 about here.]

A fix to this problem is to use non-linear precoding scheme. Atateversion of the Tomlinson-
Harashima precoding [16], [17] scheme, also known as theowgerturbation scheme, is proposed

in [14] and is described briefly as follows (cf Fig. 1). This traniged signalz is

z=H(s+p(s)) (6)
with p(s) € P(s) being the perturbation vector. Thus, an obvious optimal cghoifp is

*(8) = arg min ||z
p(s) gep( |

—arg min ||-H 's — H'p|. (7)
pEP(s)

Note that the naive ZF scheme is a particular case of the alohvsr®, which can be seen by setting
trivially P(s) = {0}. Therefore, the non-linear scheme is at least as good asntsar Ischeme. In
[14], P(s) is set as a sub-latticeZ’ [i] of the latticer.Z* [i] independent 0. 7 is chosen in order
to get a periodic extension of the original signal constelfa Thus,7/7. € Z ands + p(s) belongs

to a coset ofrZ’[i] determined by'. The received signal for each user being

s ] 1+74
yp = & 4+ 2, sk € TeL[i] + Te 5

ﬁ

the receiver tries to decide the most probable coset. Fora detector, the closest lattice point is

first found and then is used to determine the representatiafrthe coset by a modZ’ [i] operation

using the modulo functiorf,(-) where f.(y) = y — LMJ T

[11. PERIODICALLY FLIPPED CONSTELLATIONS

As shown above, the conventional vector perturbation sehegstricts the possible perturbation
vectors within the sub-latticeZ’ [i]. In this section, we show that the performance can be imgrove

with another set of perturbation vectors. The motivationhisven by the following example.

'For a QAM signaling, it is readily shown that the cardinality of the constellatiofr js)?.
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A. Motivating example

[Fig. 2 about here.]

For simplicity of demonstration, we consider, in this exdmfhe special case of QPSK modulation.
Suppose that the base station needs to transmit to somekusaymbold, = —1 + i. With the
conventional vector perturbation scheme, a replicatedtediation is used as an infinite extension of
the original constellation (cf. Fig. 2(a)). Let us assume #raither point (say-5 + ¢) that is in the
same coset turns out to minimize the transmit power and iserholf the noise happens to draw
the received symbol outside the constellation as shown inZuj, the receiver will make a wrong
decision by searching the closest point in the constehiatiiothe received symbol.

The situation can be improved with a better choice of pertishaet, i.e. a better infinite extension.
The idea is shown in Fig. 2(b). Assume thgt = 1 4 7 is the information symbol. Instead of
associating the information symbol with its periodicalgplicated counterparts, as in the previous
case, the original constellation is successively flippedyawde call this constellation scheme the
periodically flipped constellation. In this example, thensmitter finds that-5 + ¢ minimizes the
transmit power over all the associated pointsdpf= 1 + i in the PFC. Now, with the same noise
as in the previous case, the receiver can make a right dedisicsearching the closest point at the

extended constellation, i.e. the PFC. Thus, the overall eater performance is improved.

B. Scheme definition

Mathematically, a PFC of & -dimensional QAM constellatiod can be represented by
{s+p(s) | s€C, p(s) € Prec(s) }
with the set of perturbation vectors defined by
Ripi} € 2rZ)V(f (R{s:})+27Z)
R Vi=1,...,K,
Perc(s) =P (8)
S{pit € 2rZ)U(f(S{s:})+27Z)

Vi=1,...,K
where f(s) = 7 — s, s € R is the flip function;®{z} and 3{z} represent the real and imaginary

parts ofz, respectively. Since the above set is defined in a dimensigisal-nanner, we can rewrite
it as
R{pi} € Pprc(R{si})

Vi=1,..., K,
P 9)
S{pi} € Perc(S{si})

Vi=1,... K

(1>

Prec(s)
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With the flipped replication, it is obvious that points at trerder of the constellation enjoy a better
protection. This is due to the fact that the number of neighltbat are at the minimum distance to
any of these points is reduced by at least?ri®r BPSK, the number of neighbors of minimum
distance to any symbol is 1 for PFC compared to 2 in the convealticase. Similarly, this number
is equal to 2 compared to 4 for QPSK and, to 2 or 3 compared to 4GQAM.

At the receiver side, similar operation is performed as Wit conventional vector perturbation
schemes. More specifically, the closest lattice point is foshtl, and then is used to determine the
representation in the original coset using a modified moduletion which corresponds te f.(-)
when the closest point happens to be within one of the flippedtetiations and’;(-) if not. Hence,

detection complexity remains the same as the conventimratellation with the PFC.

C. Numerical Results

For illustration, we consider the case of a broadcast cHanmitte 4 transmit antennas andselected
single antennas users among a large number of users.

In Fig. 3, we compare for this antenna configuration the padket eate for the conventional vector
perturbation technique versus the PFC perturbation scheereattonvolutional codp133 0171 is
used for a packet size of 1kB. A MIMO OFDMA system, havingsubcarriers, wheré&v = 512,
1024, 2048 in practical standards is used. On each subcarrier, theneh@considered flat.

Knowing that channel coefficients on two subcarrigrand f; such that f; — f;| > B. (B. being
the coherence band) are uncorrelated, a frequency interlean be used to have independent channel
on interleaved subcarriers. For each user, a clustdiidhdependent subcarriers is assigned. This
kind of feature is usually promotted as “distributed subeas” in modern OFDMA systems such as
IEEE 802.16e and 3GPP-LTE.

We can see that the PFC provides a gain of 1.5dB for QPSK at BER 2. Although this tech-
nique protects the border points in the constellation,eh&mo gain for higher order of modulations
(16QAM and 64QAM). This loss in gain can be explained from thet that the power normalization
factors with replicated constellation is, in average, $enahan the one with periodically flipped

constellation.
[Fig. 3 about here.]

We also observed (on uncoded performance curves not peesanthis paper) that gains of PFC
over the classical SE are observed only in the low SNR regimes @4 be explained by the fact

that the PFC enhances performance of sphere encoding agaisst perturbation. At low SNR,

%In the QPSK example, the number of neighbors is reduced by two fooaétellation points.
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the probability that the error is due to noise perturbati®msignificant. However, at high SNR, the
variance of the noise is very small, this error probabilgyéduced.
Let's remark, that there is no restriction on using the PFC whidinnel inversion. PFC can be also

applied to the case of regularized sphere encoding [14].

IV. IMPROVEMENT WITH CONSTELLATION CONTRACTION

As stated in previous sections, the gain of the PFC over thedatdnperiodically replicated
constellation comes from the fact that constellation oatitthe border of the original constellation
enjoy extra protection. As it will be shown in the followinguch protection is excessive, since it
can be reduced without impacting the performance. Meamewhdducing the protection may save

transmit power.

A. Constellation Contraction

In this section, we propose to improve the performance ofwubetor perturbation scheme by
introducing a contraction on the PFC. The PFC with contractionlmmegarded as a generalized
PFC, defined by an additional contraction factofFig. 4). This idea is motivated by the following

two observations. For simplicity of demonstration, we ¢desa BPSK modulation as an example.
[Fig. 4 about here.]

First, we analyze the impact of at the receiver side. The PFC of a BPSK modulation is shown in

Fig. 5. Assuming that[" is transmitted, we have the following approximation of tineion bound

Prob{error| Ois transmittedl

() () o

where PERA — B} is the pair-wise error probability that is confused withB at the receiverg)(z)

is the Gaussian tail functiom;? is the variance of the AWGN. Sina@(t) can be well approximated

by 1/2exp(—t2/2), we know that

dmin (]- + a)dmin>
Q(\/202> >>Q< 202 ’

except fora small compared to 1. This remark implies that the error priibalis not sensitive to

«a whenq is large.

[Fig. 5 about here.]
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The second observation is impact @fon the transmitter side. Without loss of generality, let us
assume that the transmitter intends to send ‘With the PFC, the transmitter can choose in the PFC

the “CJ” that minimizes the transmit power.
p*(s) = arg min |-H 's — H'p|>. (11)
PEP(s)

This is essentially a quantization problem where the mininpawer can be seen as the quantization
error of —H 's in the irregulat lattice defined byH .. As shown in Fig. 6, decreasing the value of
« can reduce the size of quantization cell, which means a smgllantization error (smaller required

transmit power). On the other hand, increasingrovokes a larger transmit power in average.
[Fig. 6 about here.]

As a conclusion of the above observations, there is a tréfdeetween error probability at the
receiver and the average transmit power for the generalP#d scheme. This trade-off is realized
by a. While the original PFC scheme fixes = 1, a relatively large value, intuition suggests that
one should decrease from 1. In the largea regime, the error probability is not sensitive 4
whereas the transmit power is sensitive to it. In this regithe decrease of saves the transmit
power by paying a marginal penalty on the error probabilitythe regime of smalky, the error
probability is very sensitive tay, whereas the transmit power is not sensitive to it. the dseref
a merely increases the error probability. The above argumailtde confirmed by the numerical

results presented later on.

B. Performance assessments

By tuning the distance between replicated constellation, p&@rmance are improved by 1.3dB
for QPSK, 0.4dB for 16QAM and 0.3dB for 64QAM (see Fig. 7).

[Fig. 7 about here.]

V. IMPLEMENTATION OF GENERAL SPHEREENCODER
A. General closest point problem

For G € R™*™ andy € R™, let us consider the minimization
& = arg min [ly — Gz|*. (12)
zeLn

The setA(G) £ {Gz : x € Z"} is an-dimensional lattice irR™. The search in (12) for thelosest

lattice pointto a given pointy has been widely investigated in lattice theory.

%It is a lattice only wherp is in ¢Z™ with ¢ being some scalar. Her@, defined by the PFC is not a subset of a lattice

in the general case.
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More recently, Agrellet al [15] proposed the use of the Schnorr-Euchner refinement of thst Poh
enumeration [18] in thelosest lattice poinsearch. They further concluded, based on numerical re-
sults, that the Schnorr-Euchner enumeration is more effidiamt the Viterbo-Boutros implementation
[19].

In the rest of this section, we will first present briefly the pipie of the Schnorr-Euchner strategy.
A detailed version can be found in [15]. Then, it will be adapte the construct a sphere encoder
with PFC.

B. Closest lattice point search with Schnorr-Euchner aldorit

The Schnorr-Euchner strategy is in fact a combination of the tFsthetegy and the Babai nearest-
plane algorithm [20]. Let us denot& € R™*" m > n the generator matrix of lattic&(G), y € R™
a vector to be decoded in the lattidéG).

1) Recursive formulationiet us defineG,, £ G and rewrite it as

whereG,,—1 is anm x (n — 1) matrix consisting of the: — 1 first columns ofG andv, =v| + v,
with v andv in the column space and the null space®f 1, respectively. The lattice points are
defined by the following set
AG,) ={Gu, : u, € Z"}
+o00

— U {c + un’l)” +upv 1 CE A(anl)}

Up=—00

which is basically a stack afn — 1)-dimensional translated sub-lattices franiG,,—1). The (n — 1)-
dimensional hyperplanes that contain these sub-lattigdsbes called (n — 1)-dimensionallayers
u, € Z can be seen as the index of the— 1)-dimensional layer. We can write any poiptc R™
in the following form

Y= vlgn + Gn—l{nfl

with &, € R and§,,_; € R, Hence, searching the closest lattice pointifG,,) to a given point

y can be formulated as follows:

@ = arg min [y — G|’

= arg mi%n {dn(un) + [|yn—1(un) — Gn_lun_1||2} (13)

2SS
whered, (un) = &, — un|?|JvL[|* @ndy,—1(un) = (Gn-1€,_, —vjjuy,) In the last equation, the first
term stands for the distance between the given ppiand the layer defined by,,, while the second
term is the distance between the projectioryadn the translatedn — 1)-sub-lattice and a point in

this sub-lattice defined by, 1.

July 8, 2009 DRAFT



10

2) Tree structure:Therefore, finding the closest lattice point imalimensional lattice consists of
finding the closest points in all translatéd — 1)-dimensional sub-lattices. The recursive formulation
implies a tree structure that depends only on the generaatiixiGG of the lattice.

A tree node at the" level is labeled by(upn—it1,-..,uy) and represents a specific translation of
a (n — i)-dimensional sub-lattice. In particular, a leaf node istdda point. The weight of each tree
node is defined by the distance between the given poarid the translated sub-lattice related to the
node. Hence, the goal of the tree search is to find the leaf nattietre smallest weight.

3) Enumeration with non-decreasing distancBhe Schnorr-Euchner enumeration is a depth first
tree search algorithm. A distinguished property of the egnation is that the tree nodes in the same
level are ordered with increasing weight. That is, a node wismaller weight is always visited before
the others. Since the weights of the tree nodes on the d@aai be written as); = w;_1+d;(u;) differ
only ond;(u;), as implied by (13), ordering the nodes in termsugfis easy. Assuming,, < [&,],
it is obvious that

Un = En}v[ﬁn] —17[571} +1,... (14)

is a non-decreasing order in termswaf The ordering for the casg, > [¢,,] can be deduced similarly.
With this ordering constraint, the complexity is signifidgnteduced (see [15] for more details).

The pseudo code of the algorithm is provided below.

C. Sphere encoder implementations for PFC

In this section, two implementations of the sphere encodtr RFC are issued. The first solution
is the composition of sphere encoders, and the others is unique sphere encodetsdraa modified
Schnorr Euchner. It is clear that using a unique Schnorr Euchméhe resulting lattice instead of
the decompositions df sphere encoders reduces significantly the complexity asrsimo21].

1) Solution 1: composition of sphere encode®sncePprc(s) can be seen as a uniondf< shifted
sub-lattices27ZX [i], finding the closest point iPprc(s) can be implemented by finding the closest
points in each of the shifted sub-lattices and then takirgdhe with minimum distance. In each
shifted sub-lattice, a standard sphere decoder can be as#uefresearch. Therefore, the complexity
of the composition is that of the sphere decoder multipligdatfactor 22X, This exponential time
complexity becomes unacceptable for a large number of users

2) Solution 2: modified Schnorr-Euchner algorithrA:more efficient way is to modify the sphere
decoder in such a way that it can work directly on the Bgtc(s) that does not have the lattice
property in general. As it will be shown in the following, shtan be worked around since each
dimension of any point iPprc(s) belongs to a manageable set (we will get back to this in the end

of the section).
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Algorithm 1 Schnorr-Euchner search for the closest lattice point

Require: a m x n real matrixG with m > n, a m-dimensional vectoy € R™ to decode in the

1:

2:

3:

lattice A(G);
Ensure: a n-dimensional vectofi (€ Z™) such thatGu is the closest lattice point tg.
k+—mn
G, —G
Gi—1— G(:,1: k—1) andvy — Gi(:, k)
V|| (Gk_lG;ll)vk, v v —v), andzy ﬁ

4.

10:

11:

12:

13:

14.

15:

16:

17:

18:

19:

20:

21:

22:

23:

: ug, < roundxy)

. step, « sign(xy, — uy)
DA — v ll(zr — ug)
cdist, — 0

: while true do

newdist— dist, + A?
if newdist< bestdistthen
if k# 1 then

k—k—1
dist, «— newdist
y— I-vivi M)y
Y—yY—vuk
Gi_1—Gr(:,1:k—1)
v — Gi(:, k)
v — (GpaG_ vy
v —vp—v andzy ﬁ

ug, < roundxy)

step, < sigN(zx — ug)

Ag [l o[z, — ug)

> visiting intermediate node
> keep going down the tree
> update current dist.

> proj. to subspace

> horizontal shift

As is shown in section V-B3, the advantage of the Schnorr-EeiIcenumeration is its property of

the non-decreasing ordering in each dimension. In thecéattase, each real dimension is a scaled

version of the latticeZ and the ordering is easily done by (14). The implementatiothefiterator

is shown in algorithm 1 at line 5, 6, 21, 22, 28, 29, 37, and 3&se€hlines realize the updating of

the next point to visit and the updating of the step. The reghefalgorithm is independent of the

July 8, 2009
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Algorithm 2 Schnorr-Euchner search for the closest lattice point (Atgoril cont'd)

24: else > a leaf node has been visited
25: uU<—u > it is the best point for now
26: bestdist— newdist;

27: k—k+1 > go back up, keep searching
28: uy, < uj + Step,

29: step, < —step, — sign(step,)

30: A — v (zk — ug)

3L end if

32: ese > current point has a larger distance
33: if £k =n then

34: break > returnu
35: else

36: k—k+1 > go back up, keep searching
37: up < uy + step,

38: step, < —step, — sign(step,)

30: Ay — v (zk — ug)

40: end if

41: end if

42: end while

structure of the set. As an abstraction, lines 5 and 6 cangiaced by the following lines
Iter(k).updatézxy,),
uy, < Iter(k).nexy).

Similarly, lines 21 and 22 are replaced by exactly the saneslabove. On the other hand, lines 28
and 29 are replaced by

ug < lter(k).next).

Again, the same line is used to replace lines 37 and 38. Natdhbre is one “lterator” per dimension
and it is updated only when we go down from a higher dimensidrich is the case for lines 5 and
28. The update positions the point and then determines the ordering for non-decreasing distan
in the dimensiork. Thus, the current point and the step between the current ppoththe next point
are initialized each time an update is performed. The functiext() sets the next point as current

point, updates the step, and then returns the current point.

July 8, 2009 DRAFT



13

As a result, what we need is to re-implement the functionsatgfdl and next() for when the PFC
is used in place of the conventional constellation. For eaience of exposition, we consider real
lattices in the following. It can be shown that this assumptis without loss of generality because
the complex signal model can be easily converted to a reabkigiodel with the complex to real
field embedding. Furthermore, the considered model is a sealsibn of the original model in such
a way that the distance between the adjacent constellatioispis 1. The PFC without contraction
is assumed in the first place. The necessary modifications wsfhece to the generalized PFC will
be provided at the end of the section.

It should be noted that an initialization stage is neededtlieriterators at the beginning of the

proposed sphere encoding, as shown in algorithm 3.

Algorithm 3 Initialization of iterators: initg, s)
Require: an integerg and a2K x 1 vectors with s; € [0,q — 1]

1. for k=1:2K do

2: Iter(k).q <+ ¢
3: Iter(k).s < sy,

4: end for

An implementation of the updating of an iterator is shown lgoathm 4. An example of a PFC

of a BPSK constellation is illustrated in Fig. 8.
[Fig. 8 about here.]

In algorithm 4, two iterator modes have been defined accorttirthe position of¢. The iterator
decides the next point to visit in each mode.
This is implemented in the function next(), as shown in alioni 5.

In Fig. 9, the order in which the iterator visits the points li®wn for the two modes.
[Fig. 9 about here.]

It is clear that the re-implementation of the iterator doetincrease the order of the complexity
of the Schnorr-Euchner algorithm. This is due to the managesthlieture of the set in each real
dimension, thanks to which the iterator can be implementeldw complexity.

The implementation of the sphere encoder with the genethP4eC is in exactly the same way
as that with the original PFC. The only modification is on the tmrasince the PFC depends an
now. The new implementation of the functions init() and lteraipdate() is shown in algorithm 6

and algorithm 7.
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Algorithm 4 Update an iterator: Iteupdatés)

Require: a real numbetg

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

Iter.counter— 0

Iter.current— &

a — {ﬁer.qJ x 2 x lter.q

b— L%J % 2% Iter.g — (2 Iter.s + 1)

a — max{a, b}, b < min{a,b}

lter.d; «— 2 « Iter.q — (@ — b)

s lter.dy «— a — b

if £ <b+lter.qor& > a—+ lter.g then
Iter.mode« 1

else
Iter.mode«— 0

end if

if &> ‘IT“’ + Iter.q then
lter.step«— b + 2 * lter.q — &
else
Iter.step— a — &

end if
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Algorithm 5 Find the next point to visit: Itenext)
Ensure: a real number

1: lter.current— lter.current+ lter.step;

2: if Itermode= 0 then

3: if Iter.counter mod4 = 0 then
4 if Iter.counter= 0 then
5: Iter.step«— —(sign(lter.step) « Iter.d;
6: else
7 Iter.step— —Iter.step— (sign(lter.step) = Iter.d;
8: end if
9: else if Iter.counter modd = 1 then
10: Iter.step<— —Iter.step— (sign(lter.step) * lter.d,
11 else if Iter.counter modd = 2 then
12: Iter.step— —lIter.step— (sign(lter.step) * lter.dy
13: else
14: Iter.step— —lIter.step— (sign(lter.step) * lter.d;
15:  end if
16: else
17 if Iter.counter mod = 0 then
18: Iter.step— (sign(lter.step) * Iter.d
19: else
20: f < ((Iter.counter+ 1) /2) « (Iter.d; + lter.ds) — Iter.ds
21 Iter.step— —lIter.step— (sign(lter.step) * f
22:  endif
23: end if

24: lter.counter— Iter.counter+ 1

25: return Iter.current

Algorithm 6 Initialization of iterators: initg, s)
Require: an integerg and a2k x 1 vectors with s; € [0,q — 1]

1. for k=1:2K do

2: Iter(k).q < ¢

3 Iter(k).s <« sg

4 Iter(k).a «— «

5 Iter(k).Q — ¢ — 1+«
6: end for
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VI. CONCLUSIONS

In this paper, we present a new non-linear precoding teclenfior the multi-user MIMO downlink
channel in the broadband wireless context. This new pregositheme consists in choosing the set
of perturbation vectors in a periodically flipped constédiatrather than the replicated constellation

as in the case of conventional sphere encoding scheme.

Algorithm 7 Update an iterator: Iteupdatés)
Require: a real numbeg

1: Iter.counter— 0
2: lter.current«— ¢

3 a«+— LmJ 2 x lter.Q)

4: b — LWJ 2 x Iter.QQ — (2 x Iter.s + lter.a)
5. 4 — max{a,b}, b — min{a, b}

6: lter.d, — 2« lter.Q — (a —b)

7: Iter.dy «— a — b

8 if £ <b+Iter.Q or £ > a—+ lter.QQ then
9: Iter.mode«— 1

10: else

11: Iter.mode«— 0

12: end if

13: if &€ > “T“) + lter.@ then

14:  lter.step— b+ 2« lter.Q — ¢

15: else

16: Iter.step«—a — &

17: end if

We show that this scheme, by enhancing the protection of @atestellation points, improves the
performance when low order QAM constellations are used.Hgher order QAM (e.g. 64QAM)
constellations, the energy loss of the PFC compared to theatmperiodically replicated constella-
tion can be recovered using the generalized PFC with a finehdtaompression. By introducing the
contraction on the constellation distance, we show that ¢hin provide a better trade-off between
the PFC resistance and the energy efficiency.

Finally, we propose a practical implementation for the sphemcoding with PFC based on the
Schnorr-Euchner algorithm. The modified Schnorr-Euchner benefits the manageable structure

of the PFC to find the closest point in this type of lattice. Moexpthis modified algorithm takes
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into account the tuning parameter in order to adjust theadcst between neighboring replicated and

flipped constellations.
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