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Abstract

In this paper, we propose a new constellation scheme for non-linear precoding in MIMO downlink

channels. Instead of using a periodically replicated constellation, the proposed periodically flipped

constellation (PFC) successively mirrors the existing constellation to form an infinite constellation.

It is shown that the mirroring operation increases the effective minimum distance of the original

constellation and provides a superior error resistance over the conventional constellation scheme for

low order modulations, and low error rate scenarios. By allowing for a contraction on the PFC,

further performance improvement due to a better tradeoff between the average transmit power and

minimum distance is achieved. Then, practical implementation of the PFC specified sphere encoder

is proposed. With a Schnorr-Euchner based algorithm, the sphere encoder with PFC does not suffer

from any penalty in terms of complexity. Finally, we apply the PFC in an OFDMA system and

evaluate the performance with numerical simulations.

I. I NTRODUCTION

The next generation cellular system (such as IEEE 802.16m [1], LTE advanced [2], etc) features

Multiple-Input Multiple-Output (MIMO) transmission (see[3], [4]) and multi-user communications.

In the uplink channel, as known as the Multiple Access Channel (MAC), of such systems, multiple

mobile terminals transmit simultaneously to the base station. The latter treats the received signal in

such a way that messages from different mobile terminals aredistinguishable. The capacity region

of a multiple access[5] has been known decades ago. A capacity achieving scheme is the Successive

Interference Cancellation (SIC). This scheme has been well studied and extends naturally in the

MIMO case.
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Unlike the uplink channel, little is known for the downlink channel, as known as the Broadcast

Channel (BC), until recent years. Solid progress on the capacity region of MIMO broadcast channel

has been made in [6], [7], [8], [9], and the exact characterization of the capacity region was found

in [10]. It has been shown that the Dirty Paper Coding (DPC) achieves the capacity region. As a

dual counterpart of the SIC for the MAC, the DPC for the BC successively removes the inter-user

interference at transmitter provided that exact Channel State Information (CSI) is available at the

transmitter side.

The main hindrance to the practical implementation of the DPC is its high complexity (see, for

example, [11]) and its sensibility to the CSI, as shown by [12]. Low complexity solutions come

naturally to the channel inversion based schemes, such as the Zero-Forcing (ZF) and the Minimum

Mean Square Error (MMSE) precoders. The main idea is to inverse thechannel matrix at transmitter

in such a way that the inter-user interference is gone at the receiver side. However, direct application

of such precoders either requires high transmit power or results in lower Signal to Noise Ratio

(SNR) for a fixed transmit power, especially when the channel matrix is ill-conditioned. One of

the workaround is to apply the lattice basis reduction at thetransmitter side. The lattice reduction

yields a better conditioned basis and a cubic constellationcarved from the reduced basis has a much

smaller average energy (see [13]). Another workaround is the vector perturbation scheme proposed by

Hochwaldet al [14]. Instead of sending symbol from the cubic constellation carved from the lattice

of the inverse of the channel matrix, one can send any symbol from the coset of this symbol. The

optimal choice can be decided by so-called sphere encoder. In both schemes, a modulo operation is

involved at both the transmitter and receiver sides.

The performance of the vector perturbation scheme depends highly on the modulo function sensitiv-

ity to noise perturbation at low SNR. In our contribution, we propose to implement a new non-linear

precoder based on the use of a more sophisticated constellation scheme called Periodically Flipped

Constellation (PFC) at the encoder associated to a modified modulo function at the receiver to perform

decoding. We show that this technique improves the performance at low SNR by reducing detection

errors due to noise perturbation. Unlike in the original scheme in [14], the sphere encoder cannot be

applied directly for the PFC case. We proposed therefore a general sphere encoder structure based

on Schnorr-Euchner algorithm (see [15]) that works for a broadclass of constellation including the

PFC. Moreover, it turns out that the complexity of the general sphere encoder is practically the same

as the original sphere encoder.

The rest of the paper is organized as follows. The system model and some basic assumptions are

presented in section II. Section III introduces the proposedperiodically flipped constellation scheme.

The improvement that can be achieved with constellation contraction is detailed in section IV. More

over some numerical simulation results are shown in this section to asset the performance gain
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compared to conventional scheme. Section V deals with the implementation of the proposed scheme.

Finally, section VI concludes the paper.

II. PRELIMINARIES

A. Notations

The notations used in this paper are as follows. Boldface lower case lettersvvv denote vectors,

boldface capital lettersMMM denote matrices.CN represents the complex Gaussian random variable.

E (X) is the mathematical expectation of random variableX. ‖vvv‖ stands for the Euclidean norm of

vectorvvv. ‖HHH‖F is the Frobenius norm of matrixHHH andHHH−1 is the inverse of a square matrixHHH.

Z
K [i] is the set ofK length complex integer vectors. Finally,⌊x⌋ and [x] denote respectively the

floor and round operators.

B. System Model

We consider a broadcast channel with one source equipped with Nt antennas andK destinations

each one having single antenna. For the ease of presentation, we assume thatK = Nt, although the

results can be extended straightforwardly to the case withK < Nt. The signal model is

yyy = HHH
xxx√
γ

+ zzz (1)

wherezzz ∈ CN (0, I) is the Additive White Gaussian Noise (AWGN),HHH is the channel matrix, andγ

is the power normalization factor that does not depend on thetransmitted message, but can depend

on the channelHHH. Here, we set

γ ,
E(‖xxx‖2)

P
(2)

with P being the total transmission power of the source. Since the power of yyy can depend on both

the source message and the channelHHH, we impose that the expectation in (2) is only over the source

message for a given channel realizationHHH.

C. Channel Inversion

A simple linear precoding scheme is the zero-forcing precoding (also denoted channel inversion)

where

xxx , HHH−1sss (3)

with sss being the vector of signals intended for different users. Itis assumed thatsss belongs to a

constellation carved from the translated latticeΛ defined by

Λ , τcZ
K [i] + τc

1 + i

2
(4)
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and is normalized in power, i.e.E(|si|2) = 1 for all i. τc is the minimum distance between two

different points in the constellation. With the ZF precoding, the equivalent channel is

yk =

√
P

‖HHH−1‖F
sk + zk, ∀ k (5)

Since we can approximate 1

‖HHH−1‖F
by σmin(HHH), the minimum singular value ofHHH, it can be deduced

that this scheme suffers from significant loss in terms of power and diversity (of order 1 in Rayleigh

fading channels).

D. Vector Perturbation

[Fig. 1 about here.]

A fix to this problem is to use non-linear precoding scheme. A vector version of the Tomlinson-

Harashima precoding [16], [17] scheme, also known as the vector perturbation scheme, is proposed

in [14] and is described briefly as follows (cf Fig. 1). This transmitted signalxxx is

xxx = HHH−1(sss + ppp(sss)) (6)

with ppp(sss) ∈ P(sss) being the perturbation vector. Thus, an obvious optimal choice ofppp is

ppp∗(sss) = arg min
ppp∈P(sss)

‖xxx‖2

= arg min
ppp∈P(sss)

‖−HHH−1sss−HHH−1ppp‖2. (7)

Note that the naive ZF scheme is a particular case of the above scheme, which can be seen by setting

trivially P(sss) = {0}. Therefore, the non-linear scheme is at least as good as the linear scheme. In

[14], P(sss) is set as a sub-latticeτZ
K [i] of the latticeτcZ

K [i] independent ofsss. τ is chosen in order

to get a periodic extension of the original signal constellation. Thus,τ/τc ∈ Z andsss + ppp(sss) belongs

to a coset ofτZ
K [i] determined bysss1. The received signal for each user being

yk =
s′k√
γ

+ zk, s′k ∈ τcZ[i] + τc
1 + i

2
,

the receiver tries to decide the most probable coset. For a hard detector, the closest lattice point is

first found and then is used to determine the representationŝss of the coset by a mod-τZ
K [i] operation

using the modulo functionfτ (·) wherefτ (y) = y −
⌊

y+τ/2
τ

⌋

τ .

III. PERIODICALLY FLIPPED CONSTELLATIONS

As shown above, the conventional vector perturbation scheme restricts the possible perturbation

vectors within the sub-latticeτZ
K [i]. In this section, we show that the performance can be improved

with another set of perturbation vectors. The motivation is shown by the following example.

1For a QAM signaling, it is readily shown that the cardinality of the constellation is(τ/τc)
2.
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A. Motivating example

[Fig. 2 about here.]

For simplicity of demonstration, we consider, in this example, the special case of QPSK modulation.

Suppose that the base station needs to transmit to some userk a symboldk = −1 + i. With the

conventional vector perturbation scheme, a replicated constellation is used as an infinite extension of

the original constellation (cf. Fig. 2(a)). Let us assume thatanother point (say,−5 + i) that is in the

same coset turns out to minimize the transmit power and is chosen. If the noise happens to draw

the received symbol outside the constellation as shown in Fig. 2(a), the receiver will make a wrong

decision by searching the closest point in the constellation to the received symbol.

The situation can be improved with a better choice of perturbation set, i.e. a better infinite extension.

The idea is shown in Fig. 2(b). Assume thatdk = 1 + i is the information symbol. Instead of

associating the information symbol with its periodically replicated counterparts, as in the previous

case, the original constellation is successively flipped away. We call this constellation scheme the

periodically flipped constellation. In this example, the transmitter finds that−5 + i minimizes the

transmit power over all the associated points ofdk = 1 + i in the PFC. Now, with the same noise

as in the previous case, the receiver can make a right decision by searching the closest point at the

extended constellation, i.e. the PFC. Thus, the overall error rate performance is improved.

B. Scheme definition

Mathematically, a PFC of aK-dimensional QAM constellationC can be represented by

{

sss + ppp(sss) | sss ∈ C, ppp(sss) ∈ PPFC(sss)
}

with the set of perturbation vectors defined by

PPFC(sss) ,
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wheref(s) = τ − s, s ∈ R is the flip function;ℜ{x} andℑ{x} represent the real and imaginary

parts ofx, respectively. Since the above set is defined in a dimensional-wise manner, we can rewrite

it as

PPFC(sss) ,
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July 8, 2009 DRAFT



6

With the flipped replication, it is obvious that points at the border of the constellation enjoy a better

protection. This is due to the fact that the number of neighbors that are at the minimum distance to

any of these points is reduced by at least one2. For BPSK, the number of neighbors of minimum

distance to any symbol is 1 for PFC compared to 2 in the conventional case. Similarly, this number

is equal to 2 compared to 4 for QPSK and, to 2 or 3 compared to 4 for 16QAM.

At the receiver side, similar operation is performed as withthe conventional vector perturbation

schemes. More specifically, the closest lattice point is first found, and then is used to determine the

representation in the original coset using a modified modulo function which corresponds to−fτ (·)
when the closest point happens to be within one of the flipped constellations andfτ (·) if not. Hence,

detection complexity remains the same as the conventional constellation with the PFC.

C. Numerical Results

For illustration, we consider the case of a broadcast channel with 4 transmit antennas and4 selected

single antennas users among a large number of users.

In Fig. 3, we compare for this antenna configuration the packet error rate for the conventional vector

perturbation technique versus the PFC perturbation schemewhen a convolutional code[o133 o171] is

used for a packet size of 1kB. A MIMO OFDMA system, havingN subcarriers, whereN = 512,

1024, 2048 in practical standards is used. On each subcarrier, the channel is considered flat.

Knowing that channel coefficients on two subcarriersfi andfj such that|fi− fj | ≥ Bc (Bc being

the coherence band) are uncorrelated, a frequency interleaver can be used to have independent channel

on interleaved subcarriers. For each user, a cluster of10 independent subcarriers is assigned. This

kind of feature is usually promotted as “distributed subcarriers” in modern OFDMA systems such as

IEEE 802.16e and 3GPP-LTE.

We can see that the PFC provides a gain of 1.5dB for QPSK at BER= 10−2. Although this tech-

nique protects the border points in the constellation, there is no gain for higher order of modulations

(16QAM and 64QAM). This loss in gain can be explained from the fact that the power normalization

factors with replicated constellation is, in average, smaller than the one with periodically flipped

constellation.

[Fig. 3 about here.]

We also observed (on uncoded performance curves not presented in this paper) that gains of PFC

over the classical SE are observed only in the low SNR regime. This can be explained by the fact

that the PFC enhances performance of sphere encoding against noise perturbation. At low SNR,

2In the QPSK example, the number of neighbors is reduced by two for all constellation points.
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the probability that the error is due to noise perturbation is significant. However, at high SNR, the

variance of the noise is very small, this error probability is reduced.

Let’s remark, that there is no restriction on using the PFC with channel inversion. PFC can be also

applied to the case of regularized sphere encoding [14].

IV. I MPROVEMENT WITH CONSTELLATION CONTRACTION

As stated in previous sections, the gain of the PFC over the standard periodically replicated

constellation comes from the fact that constellation points at the border of the original constellation

enjoy extra protection. As it will be shown in the following,such protection is excessive, since it

can be reduced without impacting the performance. Meanwhile, reducing the protection may save

transmit power.

A. Constellation Contraction

In this section, we propose to improve the performance of thevector perturbation scheme by

introducing a contraction on the PFC. The PFC with contraction canbe regarded as a generalized

PFC, defined by an additional contraction factorα (Fig. 4). This idea is motivated by the following

two observations. For simplicity of demonstration, we consider a BPSK modulation as an example.

[Fig. 4 about here.]

First, we analyze the impact ofα at the receiver side. The PFC of a BPSK modulation is shown in

Fig. 5. Assuming that “�” is transmitted, we have the following approximation of theunion bound

Prob{error|� is transmitted}

. PEP{�→©1}+ PEP{�→©2}

= Q

(

dmin√
2σ2

)

+ Q

(

(1 + α)dmin√
2σ2

)

(10)

where PEP{A→ B} is the pair-wise error probability thatA is confused withB at the receiver;Q(x)

is the Gaussian tail function;σ2 is the variance of the AWGN. SinceQ(t) can be well approximated

by 1/2 exp(−t2/2), we know that

Q

(

dmin√
2σ2

)

≫ Q

(

(1 + α)dmin√
2σ2

)

,

except forα small compared to 1. This remark implies that the error probability is not sensitive to

α whenα is large.

[Fig. 5 about here.]
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The second observation is impact ofα on the transmitter side. Without loss of generality, let us

assume that the transmitter intends to send “�”. With the PFC, the transmitter can choose in the PFC

the “�” that minimizes the transmit power.

ppp∗(sss) = arg min
ppp∈P(sss)

‖−HHH−1sss−HHH−1ppp‖2. (11)

This is essentially a quantization problem where the minimumpower can be seen as the quantization

error of−HHH−1sss in the irregular3 lattice defined byHHH−1. As shown in Fig. 6, decreasing the value of

α can reduce the size of quantization cell, which means a smaller quantization error (smaller required

transmit power). On the other hand, increasingα provokes a larger transmit power in average.

[Fig. 6 about here.]

As a conclusion of the above observations, there is a trade-off between error probability at the

receiver and the average transmit power for the generalizedPFC scheme. This trade-off is realized

by α. While the original PFC scheme fixesα = 1, a relatively large value, intuition suggests that

one should decreaseα from 1. In the largeα regime, the error probability is not sensitive toα,

whereas the transmit power is sensitive to it. In this regime, the decrease ofα saves the transmit

power by paying a marginal penalty on the error probability.In the regime of smallα, the error

probability is very sensitive toα, whereas the transmit power is not sensitive to it. the decrease of

α merely increases the error probability. The above argumentswill be confirmed by the numerical

results presented later on.

B. Performance assessments

By tuning the distance between replicated constellation, PFCperformance are improved by 1.3dB

for QPSK, 0.4dB for 16QAM and 0.3dB for 64QAM (see Fig. 7).

[Fig. 7 about here.]

V. I MPLEMENTATION OF GENERAL SPHEREENCODER

A. General closest point problem

For GGG ∈ R
m×n andyyy ∈ R

m, let us consider the minimization

x̂xx = arg min
xxx∈Zn

‖yyy −GGGxxx‖2. (12)

The setΛ(GGG) , {GGGxxx : xxx ∈ Z
n} is a n-dimensional lattice inRm. The search in (12) for theclosest

lattice point to a given pointyyy has been widely investigated in lattice theory.

3It is a lattice only whenppp is in cZn with c being some scalar. Here,P defined by the PFC is not a subset of a lattice

in the general case.
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More recently, Agrellet al [15] proposed the use of the Schnorr-Euchner refinement of the Pohst

enumeration [18] in theclosest lattice pointsearch. They further concluded, based on numerical re-

sults, that the Schnorr-Euchner enumeration is more efficient than the Viterbo-Boutros implementation

[19].

In the rest of this section, we will first present briefly the principle of the Schnorr-Euchner strategy.

A detailed version can be found in [15]. Then, it will be adapted to the construct a sphere encoder

with PFC.

B. Closest lattice point search with Schnorr-Euchner algorithm

The Schnorr-Euchner strategy is in fact a combination of the Pohst strategy and the Babai nearest-

plane algorithm [20]. Let us denoteGGG ∈ R
m×n, m ≥ n the generator matrix of latticeΛ(GGG), yyy ∈ R

m

a vector to be decoded in the latticeΛ(GGG).

1) Recursive formulation:Let us defineGGGn , GGG and rewrite it as

GGGn =
[

GGGn−1 vnvnvn

]

whereGGGn−1 is anm× (n− 1) matrix consisting of then− 1 first columns ofGGG andvnvnvn = vvv‖ +vvv⊥,

with vvv‖ andvvv⊥ in the column space and the null space ofGGGn−1, respectively. The lattice points are

defined by the following set

Λ(GGGn) = {GGGnuuun : uuun ∈ Z
n}

=
+∞
⋃

un=−∞

{

ccc + unvvv‖ + unvvv⊥ : ccc ∈ Λ(GGGn−1)
}

which is basically a stack of(n− 1)-dimensional translated sub-lattices fromΛ(GGGn−1). The (n− 1)-

dimensional hyperplanes that contain these sub-lattices will be called (n − 1)-dimensionallayers.

un ∈ Z can be seen as the index of the(n− 1)-dimensional layer. We can write any pointyyy ∈ R
m

in the following form

yyy = vvv⊥ξn + GGGn−1ξξξn−1

with ξn ∈ R andξξξn−1 ∈ R
n−1. Hence, searching the closest lattice point inΛ(GGGn) to a given point

yyy can be formulated as follows:

ûuu = arg min
uuun∈Zn

‖yyy −GGGnuuun‖2

= arg min
uuun∈Zn

{

dn(un) + ‖yn−1(un)−GGGn−1uuun−1‖2
}

(13)

wheredn(un) = |ξn − un|2‖vvv⊥‖2 andyn−1(un) =
(

GGGn−1ξξξn−1 − vvv‖un

)

In the last equation, the first

term stands for the distance between the given pointyyy and the layer defined byun, while the second

term is the distance between the projection ofyyy on the translated(n− 1)-sub-lattice and a point in

this sub-lattice defined byuuun−1.
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2) Tree structure:Therefore, finding the closest lattice point in an-dimensional lattice consists of

finding the closest points in all translated(n− 1)-dimensional sub-lattices. The recursive formulation

implies a tree structure that depends only on the generator matrix GGG of the lattice.

A tree node at theith level is labeled by(un−i+1, . . . , un) and represents a specific translation of

a (n− i)-dimensional sub-lattice. In particular, a leaf node is a lattice point. The weight of each tree

node is defined by the distance between the given pointyyy and the translated sub-lattice related to the

node. Hence, the goal of the tree search is to find the leaf node with the smallest weight.

3) Enumeration with non-decreasing distance:The Schnorr-Euchner enumeration is a depth first

tree search algorithm. A distinguished property of the enumeration is that the tree nodes in the same

level are ordered with increasing weight. That is, a node witha smaller weight is always visited before

the others. Since the weights of the tree nodes on the leveli can be written aswi = wi−1+di(ui) differ

only on di(ui), as implied by (13), ordering the nodes in terms ofwi is easy. Assumingξn ≤ [ξn],

it is obvious that

un = [ξn], [ξn]− 1, [ξn] + 1, . . . (14)

is a non-decreasing order in terms ofwi. The ordering for the caseξn > [ξn] can be deduced similarly.

With this ordering constraint, the complexity is significantly reduced (see [15] for more details).

The pseudo code of the algorithm is provided below.

C. Sphere encoder implementations for PFC

In this section, two implementations of the sphere encoder with PFC are issued. The first solution

is the composition of2 sphere encoders, and the others is unique sphere encoders based on a modified

Schnorr Euchner. It is clear that using a unique Schnorr Euchner on the resulting lattice instead of

the decompositions of2 sphere encoders reduces significantly the complexity as shown in [21].

1) Solution 1: composition of sphere encoders:SincePPFC(sss) can be seen as a union of22K shifted

sub-lattices2τZ
K [i], finding the closest point inPPFC(sss) can be implemented by finding the closest

points in each of the shifted sub-lattices and then taking the one with minimum distance. In each

shifted sub-lattice, a standard sphere decoder can be used for the research. Therefore, the complexity

of the composition is that of the sphere decoder multiplied by a factor22K . This exponential time

complexity becomes unacceptable for a large number of usersK.

2) Solution 2: modified Schnorr-Euchner algorithm:A more efficient way is to modify the sphere

decoder in such a way that it can work directly on the setPPFC(sss) that does not have the lattice

property in general. As it will be shown in the following, this can be worked around since each

dimension of any point inPPFC(sss) belongs to a manageable set (we will get back to this in the end

of the section).
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Algorithm 1 Schnorr-Euchner search for the closest lattice point
Require: a m × n real matrixGGG with m ≥ n, a m-dimensional vectoryyy ∈ R

n to decode in the

lattice Λ(GGG);

Ensure: a n-dimensional vector̂uuu (∈ Z
n) such thatGGGûuu is the closest lattice point toyyy.

1: k ← n

2: GGGk ←GGG

3: GGGk−1 ←GGGk(:, 1 : k − 1) andvvvk ←GGGk(:, k)

4: vvv‖ ← (GGGk−1GGG
+
k−1)vvvk, vvv⊥ ← vvvk − vvv‖, andxk ← vvv⊥†yyy

‖vvv⊥‖2

5: uk ← round(xk)

6: stepk ← sign(xk − uk)

7: ∆k ← ‖vvv⊥‖(xk − uk)

8: distk ← 0

9: while true do

10: newdist← distk + ∆2
k

11: if newdist< bestdistthen

12: if k 6= 1 then ⊲ visiting intermediate node

13: k ← k − 1 ⊲ keep going down the tree

14: distk ← newdist ⊲ update current dist.

15: yyy ← (I− vvv⊥vvv⊥
+)yyy ⊲ proj. to subspace

16: yyy ← yyy − vvv‖uk ⊲ horizontal shift

17: GGGk−1 ←GGGk(:, 1 : k − 1)

18: vvvk ←GGGk(:, k)

19: vvv‖ ← (GGGk−1GGG
+
k−1)vvvk

20: vvv⊥ ← vvvk − vvv‖ andxk ← vvv⊥†yyy
‖vvv⊥‖2

21: uk ← round(xk)

22: stepk ← sign(xk − uk)

23: ∆k ← ‖vvv⊥‖(xk − uk)

As is shown in section V-B3, the advantage of the Schnorr-Euchner enumeration is its property of

the non-decreasing ordering in each dimension. In the lattice case, each real dimension is a scaled

version of the latticeZ and the ordering is easily done by (14). The implementation ofthe iterator

is shown in algorithm 1 at line 5, 6, 21, 22, 28, 29, 37, and 38. These lines realize the updating of

the next point to visit and the updating of the step. The rest ofthe algorithm is independent of the
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Algorithm 2 Schnorr-Euchner search for the closest lattice point (Algorithm I cont’d)
24: else ⊲ a leaf node has been visited

25: ûuu← uuu ⊲ it is the best point for now

26: bestdist← newdist;

27: k ← k + 1 ⊲ go back up, keep searching

28: uk ← uk + stepk

29: stepk ← −stepk − sign(stepk)

30: ∆k ← ‖vvv⊥‖(xk − uk)

31: end if

32: else ⊲ current point has a larger distance

33: if k = n then

34: break ⊲ returnûuu

35: else

36: k ← k + 1 ⊲ go back up, keep searching

37: uk ← uk + stepk

38: stepk ← −stepk − sign(stepk)

39: ∆k ← ‖vvv⊥‖(xk − uk)

40: end if

41: end if

42: end while

structure of the set. As an abstraction, lines 5 and 6 can be replaced by the following lines

Iter(k).update(xk),

uk ← Iter(k).next().

Similarly, lines 21 and 22 are replaced by exactly the same lines above. On the other hand, lines 28

and 29 are replaced by

uk ← Iter(k).next().

Again, the same line is used to replace lines 37 and 38. Note that there is one “Iterator” per dimension

and it is updated only when we go down from a higher dimension,which is the case for lines 5 and

28. The update positions the pointxk and then determines the ordering for non-decreasing distance

in the dimensionk. Thus, the current point and the step between the current point and the next point

are initialized each time an update is performed. The function next() sets the next point as current

point, updates the step, and then returns the current point.
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As a result, what we need is to re-implement the functions update() and next() for when the PFC

is used in place of the conventional constellation. For convenience of exposition, we consider real

lattices in the following. It can be shown that this assumption is without loss of generality because

the complex signal model can be easily converted to a real signal model with the complex to real

field embedding. Furthermore, the considered model is a scaledversion of the original model in such

a way that the distance between the adjacent constellation points is 1. The PFC without contraction

is assumed in the first place. The necessary modifications with respect to the generalized PFC will

be provided at the end of the section.

It should be noted that an initialization stage is needed forthe iterators at the beginning of the

proposed sphere encoding, as shown in algorithm 3.

Algorithm 3 Initialization of iterators: init(q, sss)
Require: an integerq and a2K × 1 vectorsss with si ∈ [0, q − 1]

1: for k = 1 : 2K do

2: Iter(k).q ← q

3: Iter(k).s← sk

4: end for

An implementation of the updating of an iterator is shown in algorithm 4. An example of a PFC

of a BPSK constellation is illustrated in Fig. 8.

[Fig. 8 about here.]

In algorithm 4, two iterator modes have been defined accordingto the position ofξ. The iterator

decides the next point to visit in each mode.

This is implemented in the function next(), as shown in algorithm 5.

In Fig. 9, the order in which the iterator visits the points is shown for the two modes.

[Fig. 9 about here.]

It is clear that the re-implementation of the iterator does not increase the order of the complexity

of the Schnorr-Euchner algorithm. This is due to the manageablestructure of the set in each real

dimension, thanks to which the iterator can be implemented in low complexity.

The implementation of the sphere encoder with the generalized PFC is in exactly the same way

as that with the original PFC. The only modification is on the iterator, since the PFC depends onα

now. The new implementation of the functions init() and Iterator.update() is shown in algorithm 6

and algorithm 7.
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Algorithm 4 Update an iterator: Iter.update(ξ)
Require: a real numberξ

1: Iter.counter← 0

2: Iter.current← ξ

3: a←
⌊

ξ
2∗Iter.q

⌋

∗ 2 ∗ Iter.q

4: b←
⌊

ξ+2∗Iter.s+1
2∗Iter.q

⌋

∗ 2 ∗ Iter.q − (2 ∗ Iter.s + 1)

5: ã← max{a, b}, b̃← min{a, b}
6: Iter.d1 ← 2 ∗ Iter.q − (ã− b̃)

7: Iter.d2 ← ã− b̃

8: if ξ ≤ b̃ + Iter.q or ξ ≥ ã + Iter.q then

9: Iter.mode← 1

10: else

11: Iter.mode← 0

12: end if

13: if ξ > ã+b̃
2 + Iter.q then

14: Iter.step← b̃ + 2 ∗ Iter.q − ξ

15: else

16: Iter.step← ã− ξ

17: end if
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Algorithm 5 Find the next point to visit: Iter.next()
Ensure: a real number

1: Iter.current← Iter.current+ Iter.step;

2: if Iter.mode= 0 then

3: if Iter.counter mod4 = 0 then

4: if Iter.counter= 0 then

5: Iter.step← −(sign(Iter.step)) ∗ Iter.d1

6: else

7: Iter.step←−Iter.step− (sign(Iter.step)) ∗ Iter.d1

8: end if

9: else if Iter.counter mod4 = 1 then

10: Iter.step← −Iter.step− (sign(Iter.step)) ∗ Iter.d2

11: else if Iter.counter mod4 = 2 then

12: Iter.step← −Iter.step− (sign(Iter.step)) ∗ Iter.d2

13: else

14: Iter.step← −Iter.step− (sign(Iter.step)) ∗ Iter.d1

15: end if

16: else

17: if Iter.counter mod2 = 0 then

18: Iter.step← (sign(Iter.step)) ∗ Iter.d2

19: else

20: f ← ((Iter.counter+ 1)/2) ∗ (Iter.d1 + Iter.d2)− Iter.d2

21: Iter.step← −Iter.step− (sign(Iter.step)) ∗ f

22: end if

23: end if

24: Iter.counter← Iter.counter+ 1

25: return Iter.current

Algorithm 6 Initialization of iterators: init(q, sss)
Require: an integerq and a2K × 1 vectorsss with si ∈ [0, q − 1]

1: for k = 1 : 2K do

2: Iter(k).q ← q

3: Iter(k).s← sk

4: Iter(k).α← α

5: Iter(k).Q← q − 1 + α

6: end for
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VI. CONCLUSIONS

In this paper, we present a new non-linear precoding technique for the multi-user MIMO downlink

channel in the broadband wireless context. This new precoding scheme consists in choosing the set

of perturbation vectors in a periodically flipped constellation rather than the replicated constellation

as in the case of conventional sphere encoding scheme.

Algorithm 7 Update an iterator: Iter.update(ξ)
Require: a real numberξ

1: Iter.counter← 0

2: Iter.current← ξ

3: a←
⌊

ξ
2∗Iter.Q

⌋

2 ∗ Iter.Q

4: b←
⌊

ξ+2∗Iter.s+Iter.α
2∗Iter.Q

⌋

2 ∗ Iter.Q− (2 ∗ Iter.s + Iter.α)

5: ã← max{a, b}, b̃← min{a, b}
6: Iter.d1 ← 2 ∗ Iter.Q− (ã− b̃)

7: Iter.d2 ← ã− b̃

8: if ξ ≤ b̃ + Iter.Q or ξ ≥ ã + Iter.Q then

9: Iter.mode← 1

10: else

11: Iter.mode← 0

12: end if

13: if ξ > ã+b̃
2 + Iter.Q then

14: Iter.step← b̃ + 2 ∗ Iter.Q− ξ

15: else

16: Iter.step← ã− ξ

17: end if

We show that this scheme, by enhancing the protection of outer constellation points, improves the

performance when low order QAM constellations are used. Forhigher order QAM (e.g. 64QAM)

constellations, the energy loss of the PFC compared to the standard periodically replicated constella-

tion can be recovered using the generalized PFC with a finely tuned compression. By introducing the

contraction on the constellation distance, we show that this can provide a better trade-off between

the PFC resistance and the energy efficiency.

Finally, we propose a practical implementation for the sphere encoding with PFC based on the

Schnorr-Euchner algorithm. The modified Schnorr-Euchner benefits from the manageable structure

of the PFC to find the closest point in this type of lattice. Moreover, this modified algorithm takes
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into account the tuning parameter in order to adjust the distance between neighboring replicated and

flipped constellations.
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Fig. 1. Non-linear precoding with vector perturbation.
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Fig. 4. Sphere Encoder withα-contraction.
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Fig. 5. PFC of BPSK: illustration of closest neighbors and the corresponding distances.
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Fig. 6. PFC of BPSK: quantization cell.
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Fig. 8. An example of PFC with BPSK: updating the iterator.
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Fig. 9. An example of PFC with BPSK: visiting order.
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