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Abstract—In this paper, we propose a new constellation region. As a dual counterpart of the SIC for the MAC,
scheme for non-linear precoding in MIMO downlink chan-  the DPC for the BC successively removes the inter-user
nels. Instead of using a periodically replicated constella nterference at transmitter provided that exact Channel
tion, the proposed periodically flipped constellation (PFQ  giate |nformation (CSI) is available at the transmitter
successively mirrors the existing constellation to form side.

an infinite constellation. It is shown that the mirroring The main hindrance to the practical implementation
operation increases the effective minimum distance of € ma ance {o the practica piementatio

the original constellation and provides a superior error Of the DPC is its high complexity (see, for example,

resistance over the conventional constellation scheme for[11]) and its sensibility to the CSI, as shown by [12].
low order modulations, and low error rate scenarios. By Low complexity solutions come naturally to the channel

allowing for a contraction on the PFC, further perfor- inversion based schemes, such as the Zero-Forcing (ZF)
mance improvement due to a better tradeoff between the gnd the Minimum Mean Square Error (MMSE) pre-
average transmit power and minimum distance is achieved. coders. The main idea is to inverse the channel matrix at
Then, practical implementation of the PFC specified sphere yansmitter in such a way that the inter-user interference
encoder is proposed. With a Schnorr-Euchner based algo- is gone at the receiver side. However, direct application

rithm, the sphere encoder with PFC does not suffer from f h d ith . hiah .
any penalty in terms of complexity. Finally, we apply the of such precoders either requires high transmit power or

PFC in an OFDMA system and evaluate the performance fesults in lower Signal to Noise Ratio (SNR) for a fixed
with numerical simulations. transmit power, especially when the channel matrix is

ill-conditioned. One of the workaround is to apply the
lattice basis reduction at the transmitter side. The lattice
. INTRODUCTION reduction yields a better conditioned basis and a cubic
The next generation cellular system (such as IEE®nstellation carved from the reduced basis has a much
802.16m [1], LTE advanced [2], etc) features Multiplesmaller average energy (see [13]). Another workaround
Input Multiple-Output (MIMO) transmission (see [3],is the vector perturbation scheme proposed by Hochwald
[4]) and multi-user communications. et al [14]. Instead of sending symbol from the cubic
In the uplink channel, as known as the Multiple Accesonstellation carved from the lattice of the inverse of
Channel (MAC), of such systems, multiple mobile tethe channel matrix, one can send any symbol from the
minals transmit simultaneously to the base station. Theset of this symbol. The optimal choice can be decided
latter treats the received signal in such a way that md®¢ so-called sphere encoder. In both schemes, a modulo
sages from different mobile terminals are distinguisieperation is involved at both the transmitter and receiver
able. The capacity region of a multiple access[5] ha#des.
been known decades ago. A capacity achieving schem@&he performance of the vector perturbation scheme
is the Successive Interference Cancellation (SIC). Thdepends highly on the modulo function sensitivity to
scheme has been well studied and extends naturallynivise perturbation at low SNR. In our contribution, we
the MIMO case. propose to implement a new non-linear precoder based
Unlike the uplink channel, little is known for theon the use of a more sophisticated constellation scheme
downlink channel, as known as the Broadcast Chanmellled Periodically Flipped Constellation (PFC) at the
(BC), until recent years. Solid progress on the capaci#yncoder associated to a modified modulo function at the
region of MIMO broadcast channel has been made iiaceiver to perform decoding. We show that this tech-
[6], [7], [8], [9], and the exact characterization of thanique improves the performance at low SNR by reducing
capacity region was found in [10]. It has been showatetection errors due to noise perturbation. Unlike in the
that the Dirty Paper Coding (DPC) achieves the capacityiginal scheme in [14], the sphere encoder cannot be



applied directly for the PFC case. We proposed therefde Channel Inversion

a general sphere encoder structure based on Schnoriy simple linear precoding scheme is the zero-forcing

Euchner algorithm (see [15]) that works for a broad Cla?;ﬁecoding (also denoted channel inversion) where
of constellation including the PFC. Moreover, it turns

out that the complexity of the general sphere encoder is T2 H's 3)

practically the same as th? onglna'l sphere encoder. with s being the vector of signals intended for different
The rest of the paper is organized as follows. The

. . user. It is assumed that belongs to a constellation

system model and some basic assumptions are presente : .

) . ) . .~ carved from the translated lattice defined by

in section Il. Section Il introduces the proposed periodi-

cally flipped constellation scheme. The improvement that A2 7K 1+ 4
. . . .. . = Tc M + Te (4)

can be achieved with constellation contraction is detailed 2

in section 1IV. More over some numerical simulatio@nd is normalized in power, i.&(|s;|%) =1 for all 4. 7,

results are shown in this section to asset the performangenhe minimum distance between two different points in

gain compared to conventional scheme. Section V degi@ constellation. With the ZF precoding, the equivalent
with the implementation of the proposed scheme. Finalbhannel is

section VI concludes the paper.

VP
Yk = Sk T %k, Vk (5)
[l. PRELIMINARIES | H ¢
A. Notations Since we can approximateﬁHlfl‘ by omin(H), the
F

The notations used in this paper are as follows. Bolerinimum singular value off, it can be deduced that this
face lower case letters denote vectors, boldface capitakscheme suffers from significant loss in terms of power
letters M denote matricesC V' represents the complexand diversity (of order 1 in Rayleigh fading channels).
Gaussian random variabl& (X) is the mathematical
expectation of random variabl&. ||v|| stands for the D. Vector Perturbation
Euclidean norm of vectay. || H || is the Frobenius norm
of matrix H and H ! is the inverse of a square matrix binary stream
H.7X[i] is the set ofK length complex integer vectors. J' Base Station (TX)

Finally, 2] and [z] denote respectively the floor and : vector prommrann
round operators. || Mmodulation perturbation inversion |1 Y

B. System Model LT

We consider a broadcast channel with one source
equipped with N; antennas andX destinations each decoded datay .|
one having single antenna. For the ease of presentaton, @ '——— —F——
we assume thak = N, although the results can be Mobile Station (RX)
extended straightforwardly to the case with < N;.
The signal model is

Fig. 1. Non-linear precoding with vector perturbation.

Y= ; gl +z 1) A fix to this problem is to use non-linear precoding
el scheme. A vector version of the Tomlinson-Harashima
wherez € CN(0,1) is the Additive White Gaussian precoding [16], [17] scheme, also known as the vector
Noise (AWGN), H is the channel matrix, ang is the perturbation scheme, is proposed in [14] and is described
power normalization factor that does not depend on théefly as follows (cf Fig. 1). This transmitted signal
transmitted message, but can depend on the chdiineljs

Here, t _ gl
ere, we se (Il x=H (s+p(s)) (6)

- p @) with p(s) € P(s) being the perturbation vector. Thus,
with P being the total transmission power of the sourc@h obvious optimal choice gf is
Since the power ofy can depend on both the source
message and the chanri| we impose that the expec-
tation in (2) i_s only over the source message for a given — arg min |—-H 's — H'p|%. 7)
channel realizatiodd . peEP(s)

* : 2
8) = ar min ||x
p'(s) = arg_min [



Note that the naive ZF scheme is a particular case tbht the base station needs to transmit to some kser
the above scheme, which can be seen by setting triviaflysymbold, = —1 + i. With the conventional vector
P(s) = {0}. Therefore, the non-linear scheme is at leaperturbation scheme, a replicated constellation is used
as good as the linear scheme. In [1#(s) is set as as an infinite extension of the original constellation (cf.
a sub-latticerZ[i] of the lattice7.Z%[i] independent Fig. 2(a)). Let us assume that another point (s&y; i)
of s. 7 is chosen in order to get a periodic extensiothat is in the same coset turns out to minimize the trans-
of the original signal constellation. Thus/7. € Z and mit power and is chosen. If the noise happens to draw
s +p(s) belongs to a coset ofZX [i] determined by?®. the received symbol outside the constellation as shown
The received signal for each user being in Fig. 2(a), the receiver will make a wrong decision
s , 14 by searching the closest point in the constellation to the
Yp = —= 4 2k, 8, € T[]+ Te 5 received symbol.

V7 The situation can be improved with a better choice
the receiver tries to decide the most probable coset. ifgrperturbation set, i.e. a better infinite extension. The
a hard detector, the closest lattice point is first found afgka is shown in Fig. 2(b). Assume thdt = 1 + i
then is used to determine the representadiofithe coset is the information symbol. Instead of associating the
by a mod+Z*[i] operation using the modulo functioninformation symbol with its periodically replicated coun-

f+(-) where f-(y) =y — LMJ T. terparts, as in the previous case, the original constefiati
is successively flipped away. We call this constellation
I1l. PERIODICALLY FLIPPED CONSTELLATIONS scheme the periodically flipped constellation. In this

As shown above, the conventional vector perturbati§¥@mple, the transmitter finds thats + i minimizes
scheme restricts the possible perturbation vectors witfftf transmit power over all the associated points of
the sub-latticerZX[i]. In this section, we show thatdx = 1+ in the PFC. Now, with the same noise as in the

the performance can be improved with another set Bf€Vious case, the receiver can make a right decision by
perturbation vectors. The motivation is shown by theearching the closest point at the extended constellation,
following example. i.e. the PFC. Thus, the overall error rate performance is

improved.

A. Motivating example .
B. Scheme definition

Mathematically, a PFC of ak-dimensional QAM

detection {. constellationC can be represented by
perturbation } } {5 +p(s) ’ sc C, p(s) c PPFC(S)}
u u u u 5= with the set of perturbation vectors defined by
replicated QPSK original QPSK %{pl} 6 (2TZ) U(f(éR{S’L}) +2TZ)
(a) Replicated constellation A Vi=1,..., K,
Perc(s) =P | N
S{pi} € 2TZ2)U(f(S{s:i})+27Z)
detection . VZ - 17 ey K
f ‘E.\b ‘ -— 1 (8)
: ‘ ‘ where f(s) = 7 — s, s € R is the flip function;
] ] | ] E N R{xz} andI{z} represent the real and imaginary parts
of x, respectively. Since the above set is defined in a
fipped QPSK original QPSK dimensional-wise manner, we can rewrite it as
(b) Periodically flipped constellation %{p} c PPFC(%{S‘})
(] 1
Fig. 2. Extra protection provided by periodically flipped constella- N Vi=1,...,K,
tion. Prec(s) = 4 p Y 9)
S{pi} € Prrc(S{si})
For simplicity of demonstration, we consider, in this Vi=1,...,K

example, the special case of QPSK modulation. SulO':)Osﬁ"/Vith the flipped replication, it is obvious that points at

1For a QAM signaling, it is readily shown that the cardinality otN€ border of the constellation enjoy a better protection.
the constellation ig7/7.)>. This is due to the fact that the number of neighbors



that are at the minimum distance to any of these points SE perf. for coded modulations, 10 subcarriers/user
is reduced by at least oheFor BPSK, the number of 10° e e

neighbors of minimum distance to any symbol is 1 for | | \
PFC compared to 2 in the conventional case. Similarly,
this number is equal to 2 compared to 4 for QPSK and,
to 2 or 3 compared to 4 for 16QAM.

At the receiver side, similar operation is performec?{-': 107 e o e
as with the conventional vector perturbation schemes. ~ QPSKSESTD | |
More specifically, the closest lattice point is first found, T SoMMsESYD T
and then is used to determine the representation in the I éﬁgm SERRC \‘ | o
original coset using a modified modulo function which ~© BAQAMSEPFC ; :
corresponds to-f-(-) when the closest point happens 107 o 5 10 s 20 -
to be within one of the flipped constellations ajid-) SNR
if not. Hence, detection complexity remains the same as
the conventional constellation with the PEC. Fig. 3. Coded performance of PFC sphere encoder versus sfandar

sphere encoder

C. Numerical Results

For illustration, we consider the case of a broadcgse¢rturbation. At low SNR, the probability that the error
channel with4 transmit antennas antl selected single is due to noise perturbation is significant. However, at
antennas users among a large number of users. high SNR, the variance of the noise is very small, this

In Fig. 3, we compare for this antenna configuratioarror probability is reduced.
the packet error rate for the conventional vector perturba-Let's remark, that there is no restriction on using the
tion technique versus the PFC perturbation schemewl®RC with channel inversion. PFC can be also applied to

a convolutional codgo133 0171 is used for a packet the case of regularized sphere encoding [14].
size of 1kB. A MIMO OFDMA system, havingV

subcarriers, whereV. = 512, 1024, 2048 in practical
standards is used. On each subcarrier, the channel is V. IMPROVEMENT WITH CONSTELLATION
considered flat. CONTRACTION
Knowing that channel coefficients on two subcarriers _ _ _ _
fi and f; such that|f; — f;| > B. (B, being the As stated in previous sections, the gain of the PFC
coherence band) are uncorrelated, a frequency interlea®é®r the standard periodically replicated constellation
can be used to have independent channel on interlea¢8fes from the fact that constellation points at the border
subcarriers. For each user, a clusterlofindependent Of the original constellation enjoy extra protection. As
subcarriers is assigned. This kind of feature is usli-Will be shown in the following, such protection is
ally promotted as “distributed subcarriers” in moderBXxcessive, since it can be reduced without impacting the
OFDMA systems such as IEEE 802.16e and 3GPP-LTEerformance. Meanwhile, reducing the protection may
We can see that the PFC provides a gain of 1.5dB f&aV€ transmit power.
QPSK at BER= 10~2. Although this technique protects
the border points in the constellation, there is no gain for
higher order of modulations (1L6QAM and 64QAM). Thid\.- Constellation Contraction
loss In _gair_l can be expl_ained fr_om the fact that Fhe POWET| 1 this section, we propose to improve the performance
normalization factors with replicated constellation is, lof the vector perturbation scheme by introducing a

average, smaller than the one with periodically ﬂiloloe(‘,jontraction on the PFC. The PFC with contraction can be

co\r;\?tell?tion.b q ded ; regarded as a generalized PFC, defined by an additional
e also observed (on uncoded performance CUNESntraction factora (Fig. 4). This idea is motivated

not presented in this paper) that gains of PFC OV% the following two observations. For simplicity of

the_ classic_al SE are obs_erved only in the low SN monstration, we consider a BPSK modulation as an
regime. This can be explained by the fact that the PFeg:(am le

enhances performance of sphere encoding against nOiSEirst we analyze the impact of at the receiver side.

2In the QPSK example, the number of neighbors is reduced by g PFC of a BPSK modulation is shown in Fig. 5.
for all constellation points. Assuming that 1" is transmitted, we have the following



Amin llmin

error (smaller required transmit power). On the other
R Bt TR hand, increasing. provokes a larger transmit power in
- : I m average.

| Iflﬁli L I:ll:l I:I

« translated flipped QPSK  original QPSK . . .
Fig. 6. PFC of BPSK: quantization cell.

Fig. 4. Sphere Encoder with-contraction.

As a conclusion of the above observations, there is a

approximation of the union bound trade-off between error probability at the receiver and the
average transmit power for the generalized PFC scheme.
Prob{error| Ois transmitted This tradg—off is realized by_y. While the origin_al PFC
S PERO — O} + PERO — O3} scheme fixesy = 1, a relatively large value, intuition

suggests that one should decreasieom 1. In the large
dmin (1 + a)dmin i ili i i
=Q +Q( —==2") (10) « regime, the error probability is not sensitive tg
V202 V202 whereas the transmit power is sensitive to it. In this
where PERA — B} is the pair-wise error probabil-regime, the decrease of saves the transmit power by
ity that A is confused withB at the receiver,Q(z) Paying a marginal penalty on the error probability. In the
is the Gaussian tail functions? is the variance of regime of smalky, the error probability is very sensitive
the AWGN. SinceQ(t) can be well approximated byto «, whereas the transmit power is not sensitive to it.

1/2exp(—t%/2), we know that the decrease ak merely increases the error probability.
4 1 P The above arguments will be confirmed by the numerical
Q (\/Iﬂ) > Q (w‘)mm> , results presented later on.
202 V202

except fora small compared to 1. This remark implies
that the error probability is not sensitive towhenc is

large.
9 B. Performance assessments

(| OO [ OO By tuning the distance between replicated constella-
i (14 )iy tion, PFC performance are improved by 1.3dB for QPSK,

. : . _ 0.4dB for 16QAM and 0.3dB for 64QAM (see Fig. 7).
Fig. 5. PFC of BPSK: illustration of closest neighbors and the

corresponding distances.

The second observation is impact ofon the trans- SNR Gain for SE PFCa vs SE PFC, 10 subcarriers/user

mitter side. Without loss of generality, let us assume that

the transmitter intends to sendl®. With the PFC, the 1[‘\
transmitter can choose in the PFC tli&" ‘that minimizes
the transmit power. 05 %

0

SNR

p*(s) = arg min |-H s — H'p|>. (12)
pEP(s)

This is essentially a quantization problem where the e

minimum power can be seen as the quantization error of _;
—H s in the irregulat lattice defined by .. As shown | 3 | | |
in Fig. 6, decreasing the value of can reduce the size  -15 : : : : : :

. . . . . 0 0.2 0.4 0.6 0.8 1 1.2 1.4
of quantization cell, which means a smaller quantization Dmin ratio

%It is a lattice only wherp is in ¢Z" with ¢ being some scalar. Fig. 7. SNR gain of PFGr versus PFC at a PER target of 1%.
Here, P defined by the PFC is not a subset of a lattice in the general
case.



V. IMPLEMENTATION OF GENERAL SPHERE with &, € R and¢,,_; € R"'. Hence, searching the
ENCODER closest lattice point il\(G,,) to a given pointy can be

A. General closest point problem formulated as follows:

For G € R™*™ andy € R™, let us consider the u = arg meuzl ly — Gruy?
U, n

minimization 2
=arg min §d,(un) + [|yn—1(un) — Gn_1tn_1

& = arg min [ly — Gz|*. (12) un €l { (un) + [y (un) | }

xEL™ (13)

The setA(G) £ {Gzx : x € Z"} is a n-dimensional here do(tn) = |60 — unl2o L] and ypi(un) =

lattice inIR™. The search in (12) for thelosest lattice (Gro1&)q — v”un) In the last equation, the first term

pointto a given pointy has been widely investigated instands for the distance between the given pgirand

lattice theory. the layer defined by.,, while the second term is the
More recently, Agrelet al[15] proposed the use of thegdistance between the projection gfon the translated

Schnorr-Euchner refinement of the Pohst enumeratiglg_ 1)-sub-lattice and a point in this sub-lattice defined
[18] in the closest lattice pointsearch. They further py 4, ;.

COﬂClUded, based on numerical results, that the SChnOfr2) Tree Structure:Thereere’ f|nd|ng the closest lat-
Euchner enumeration is more efficient than the Viterb@ce point in an-dimensional lattice consists of finding
Boutros implementation [19]. the closest points in all translatéd — 1)-dimensional

In the rest of this section, we will first present brieflsyb-lattices. The recursive formulation implies a tree

the principle of the Schnorr-Euchner strategy. A detailedructure that depends only on the generator magix
version can be found in [15]. Then, it will be adapted tgf the lattice.

the construct a sphere encoder with PFC. A tree node at thei™ level is labeled by
(Up—it1,--.,un) and represents a specific translation of

B. Closest lattice point search with Schnorr-Euchne® (n — i)-dimensional sub-lattice. In particular, a leaf

algorithm node is a lattice point. The weight of each tree node is

defined by the distance between the given pgirand

. The Schnorr-Euchner strategy is in fagt a Combmﬁie translated sub-lattice related to the node. Hence, the
tion of the Pohst strategy and the Babai nearest-plane

algorithm [20]. Let us denot€ € R™*" m > n the goal of the tree search is to find the leaf node with the
9 B . T smallest weight.
generator matrix of latticé (G), y € R™ a vector to be . , . .
decoded in the lattica (G) 3) Enumeration with non-decreasing distanc&he
1) Recursive formulatio.nLet us defingG.. 2 G and Schnorr-Euchner enumeration is a depth first tree search
rewrite it as " algorithm. A distinguished property of the enumeration
G, =[G ] is that the tree nodes in the same level are ordered
n= [Yn-1 Un with increasing weight. That is, a node with a smaller
where G,,_; is anm x (n — 1) matrix consisting of weight is always visited before the others. Since the
the n — 1 first columns ofG andv, = v + v, with weights of the tree n_odes on the levalan bg wri_tten as
v andv, in the column space and the null space ofi = wi—1+ d;(u;) differ only ond;(v;), as implied by
G,_1, respectively. The lattice points are defined by tH@3), ordering the nodes in termsof is easy. Assuming

following set &n < [€,], it is obvious that
oo is a non-decreasing order in termsof. The ordering

= U {etwy+uwic€AMGua)} o the caset, > [¢,] can be deduced similarly.

Un=m00 With this ordering constraint, the complexity is signif-
which is basically a stack ofin — 1)-dimensional icantly reduced (see [15] for more details). The pseudo
translated sub-lattices from\(G,_1). The (n — 1)- code of the algorithm is provided below.
dimensional hyperplanes that contain these sub-lattices

will be called (n — 1)-dimensionallayers u, € Z can Sphere encoder implementations for PFC

be seen as the index of tHe — 1)-dimensional layer. n thi i wo imol tat £ h h

We can write any poiny € R™ in the following form n this section, two implementations ot the sphere
encoder with PFC are issued. The first solution is the

y=v.&+G1&,_ composition of2 sphere encoders, and the others is



Algorithm 1 Schnorr-Euchner search for the closegtlgorithm 2 Schnorr-Euchner search for the closest

lattice point lattice point (Algorithm | cont'd)

Require: a m x n real matrixG with m > n, am- 24 else > a leaf node has been visited
dimensional vectogy € R™ to decode in the lattice 25: U —u > it is the best point for now
AG); 26: bestdist— newdist;

Ensure: an-dimensional vectofi (¢ Z™) such thatGu  27: k — k+1 1> go back up, keep searching
is the closest lattice point tg. 28: uy, < ug + step,

1 k—n 29: step, < —step, — sign(step,)

2.GrL—G 30: A — Jlvo|[(zk — uk)

3 Gip_1 < Gi(:,1: k—1) andvy «— Gi(:, k) 31 end if

4 v — (Gk,lG]j_l)vk, v «— v —v, andz, «— 32 else > current point has a larger distance

vy 33: if &k =n then

g 51;{\\_2 roundz;) 2;,: elséoreak > returna

3: Ztep“ o Slgr(xk_ ) 36: k «— k+ 11> go back up, keep searching
DA = o f[(we — k)

8: dist, — 0 37: uy < uy + step, .

o: while true do 38: step, < —step, — sign(step,)

10:  newdist— dist, + A? 39: Ap oL l(ze — )

11:  if newdist< bestdistthen 40: end if

12: if k#1then ¢ visiting intermediate node al: end_lf

13: k—k—1 1 keep going down the tree 42: end while

14: dist, <— newdist > update current dist.

15: y— T-vw, My > proj. _to subquce such a way that it can work directly on the $@ir(s)

16 Yy > horizontal shift that does not have the lattice property i . A

17: Gi 1 Gp(:,1:k—1) L . . b p.er y In general. A

18 v — Gi(s, k) it will be _shown in th_e foIIqwmg, this car_l be worked

1o vy — (G G+ v around since each dimension of any point7gc(s)

I e § belongs to a manageable set (we will get back to this in

20: vy v — v andag — the end of the section).

21 uy, < roundzy,) As is shown in section V-B3, the advantage of the

22: step, < sign(zy — ux) Schnorr-Euchner enumeration is its property of the non-

23: A — [lvo|l(zk — uk) decreasing ordering in each dimension. In the lattice

case, each real dimension is a scaled version of the
lattice Z and the ordering is easily done by (14). The

unique sphere encoders based on a modified SchriBtplementation of the iterator is shown in algorithm 1

Euchner. It is clear that using a unique Schnorr Euchrgrline 5, 6, 21, 22, 28, 29, 37, and 38. These lines realize

on the resulting lattice instead of the decompositions #fe updating of the next point to visit and the updating

2 sphere encoders reduces significantly the complexft the step. The rest of the algorithm is independent of

as shown in [21]. the structure of the set. As an abstraction, lines 5 and 6
1) Solution 1: composition of sphere encodegince can be replaced by the following lines

Ppp_c(s) can be seen as a union @?K_shifted sub- Iter(k).updatézy),

lattices 27Z%[i], finding the closest point iPprc(s)

can be implemented by finding the closest points in

each of the shifted sub-lattices and then taking the o8émilarly, lines 21 and 22 are replaced by exactly the

with minimum distance. In each shifted sub-lattice, same lines above. On the other hand, lines 28 and 29

standard sphere decoder can be used for the reseaact.replaced by

Therefore, the complexity of the composition is that

of the sphere decoder multiplied by a fac®#. This

exponential time complexity becomes unacceptable fagain, the same line is used to replace lines 37 and 38.

a large number of userk’. Note that there is one “Iterator” per dimension and it is
2) Solution 2: modified Schnorr-Euchner algorithm: updated only when we go down from a higher dimension,

A more efficient way is to modify the sphere decoder iwhich is the case for lines 5 and 28. The update positions

uy, « Iter(k).nexy).

uy < lter(k).next).



the pointz; and then determines the ordering for non-

decreasing distance in the dimensionThus, the current Algorithm 4 Update an iterator: Itempdatéc)

point and the step between the current point and the n??@quire: a real numbet

point are initialized each time an update is performed,.
The function next() sets the next point as current point,.
updates the step, and then returns the current point.

As a result, what we need is to re-implement the
functions update() and next() for when the PFC is used if:
place of the conventional constellation. For convenience:
of exposition, we consider real lattices in the following. 6:
It can be shown that this assumption is without loss;:
of generality because the complex signal model can bg
easily converted to a real signal model with the complex.
to real field embedding. Furthermore, the considered.
model is a scaled version of the original model in such g
way that the distance between the adjacent constellatipn
points is 1. The PFC without contraction is assumed ifs:
the first place. The necessary modifications with respegt:
to the generalized PFC will be provided at the end gfs.
the section. 16:

It should be noted that an initialization stage is needed-

Iter.counter— 0
Iter.current— &

¢
MJ x 2 x lter.q
b L%ﬁ:;ﬂj * 2 x lter.g — (2 x Iter.s + 1)

a < max{a, b}, b < min{a, b}
lter.d; — 2« Iter.q — (a — b)
lter.dy «— a — b
if £<b+lter.q or & > a+ lter.q then
Iter.mode«— 1
else
Iter.mode«— 0
end if
if &> % 4 Iter.q then
lter.step— b + 2 * lter.q — &
else
Iter.step—a — &
end if

for the iterators at the beginning of the proposed sphere
encoding, as shown in algorithm 3.

Algorithm 3 Initialization of iterators: initg, s)

Algorithm 5 Find the next point to visit: Itenext)

Require: an integerqg and a2K x 1 vectors with s; €

[07 q— 1] 1:

1: for k=1:2K do 2:
2: Iter(k).q < ¢ 3.
3 Iter(k).s < sk 4
4: end for 5
6:

7.

An implementation of the updating of an iterator is
shown in algorithm 4. An example of a PFC of a BPSK
constellation is illustrated in Fig. 8. 10:

11:
! 12:
I;I 0o 13
! 14:
15:
16:

Fig. 8. An example of PFC with BPSK: updating the iterator.

In algorithm 4, two iterator modes have been define_lég
according to the position of. The iterator decides theqo-
next point to visit in each mode. 20:

This is implemented in the function next(), as shown
in algorithm 5. 2L

In Fig. 9, the order in which the iterator visits the??:
points is shown for the two modes. gj

It is clear that the re-implementation of the iteratoss

Ensure: a real number

Iter.current— lIter.current+ Iter.step;
if Iter.mode= 0 then
if Iter.counter modd = 0 then
if Iter.counter= 0 then
Iter.step— —(sign(lter.step) x Iter.d;
else
Iter.step— —Iter.step-(sign(Iter.step ) xlter.d;
end if
else if lter.counter modd = 1 then
Iter.step— —Iter.step— (sign(lter.step) * lter.d,
else if Iter.counter mod4 = 2 then
Iter.step— —lIter.step— (sign(lter.step) * lter.d,
else
Iter.step— —lIter.step— (sign(lter.step) = Iter.d;
end if
else
if Iter.counter mo2 = 0 then
Iter.step— (sign(Iter.step) « Iter.ds
else
f < ((iter.counter+ 1)/2) * (Iter.d; + Iter.dy) —
Iter.d,
Iter.step— —lIter.step— (sign(lter.step) * f
end if

s end if

Iter.counter~ Iter.counter+ 1

: return lter.current

does not increase the order of the complexity of the
Schnorr-Euchner algorithm. This is due to the manage-



mode 1

/\/—\

|| 1 ) ) (.| (|
L - | \ N\ - | - |

6)

Algorithm 7 Update an iterator: Iteupdatés)

—

1:
mode 0 /\ S
o----ox-o---o--a0-0 3
—
4.
Fig. 9. An example of PFC with BPSK: visiting order. 5:
6:

Require: a real numbeg

Iter.counter— 0
Iter.current— &

72*Ifer.QJ 2 x Iter.Q

b— {%J 2 lter.Q — (2 Iter.s + lter.at)

a — max{a,b}, b — min{a, b}
lter.d; « 2 x Iter.Q — (a — b)

a <—

7: Iter.dy «—a—b

able structure of the set in each real dimension, thanks
which the iterator can be implemented in low complexity.9:

' if ¢ <+ Iter.Q or € >+ Iter.Q then

Itermode«— 1
else
Iter.mode« 0
end if
if £> &2+ lter.Q then

Iter.step— b+ 2 x Iter.() — &
else

Iter.step—a — &
end if

Algorithm 6 Initialization of iterators: initg, s) 12
Require: an integerg and a2K x 1 vectors with s; € .
[0,q —1] 13:
1: for k=1:2K do 14:
2 Iter(k).q < ¢ 15:
3 Iter(k).s < sy, 16:
4: Iter(k).a — « 17:
5 Iter(k).Q «— ¢ — 1+ «
6: end for

point in this type of lattice. Moreover, this modified algo-

The implementation of the sphere encoder with thgnm takes into account the tuning parameter in order to

generalized PFC is in exactly the same way as that Wi§jyst the distance between neighboring replicated and
the original PFC. The only modification is on the iteratofjizned constellations.

since the PFC depends annow. The new implementa-
tion of the functions init() and Iterator.update() is shown

in algorithm 6 and algorithm 7. "

(2]

In this paper, we present a new non-linear precoding]
technique for the multi-user MIMO downlink channel
in the broadband wireless context. This new precoding
scheme consists in choosing the set of perturbatiofll
vectors in a periodically flipped constellation rather than
the replicated constellation as in the case of conventiong
sphere encoding scheme.

We show that this scheme, by enhancing the protectio[ﬁ]
of outer constellation points, improves the performance
when low order QAM constellations are used. For highef7]
order QAM (e.g. 64QAM) constellations, the energy
loss of the PFC compared to the standard periodi-
cally replicated constellation can be recovered using thg
generalized PFC with a finely tuned compression. By
introducing the contraction on the constellation distance
we show that this can provide a better trade-off betweel@]
the PFC resistance and the energy efficiency.

Finally, we propose a practical implementation for the
sphere encoding with PFC based on the Schnorr-EuchHét
algorithm. The modified Schnorr-Euchner benefits from
the manageable structure of the PFC to find the closest

VI. CONCLUSIONS
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